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The physical presence of vacuum structures can be
expressed in terms of a coupling iImpedance experienced by the
beam. The team environment considered here consists of parasitic
higher order modes of the r.f. cavities, These resonances may have
high enough Qs to allow consecutive bunches to interact through
mutually induced felds. The cumulative effect of such fields as the
particles pass through the cavity may be to induce a coherent
buildup in synchrotron motion of the bunches, 1, ¢, a longitudinal

coupled-bunch instability?.

The colliding mode operation of the present generation of
high energy synchrotrons and the accompanying r.f. manipulations,
make considerations of Individual bunch area of paramount
importance. Thus, a longitudinal instability in one of a chain of
accelerators. while not leading to any immediate reduction in the
Intensity of the beam in that accelerator, may cause such a
reduction of beam quality that later operations are inhibited
(resulting in a degradation in performance).

In this paper we employ a longitudinal phase-space tracking
code (ESME)? as an effective tool to stroulate specific coupled bunch
modes arising in a circular accelerator. One of the obvious
advantages of the simulation compared to existing analytic

formalisms, e.g, based on the Vlasov equation?, is that it allows
consideration of the instability in a self-consistent manner with
respect to the changing accelerating conditions. Furthermaore this
scheme allows to model nonlinearitles of the longitudinal heam
dynamics, which are usually not tractable analytically.

Included in the simulation is the investigation of possible
cures aimed at eliminating or limiting growth of these instabilities.
Most of the discussion is confined to three basic darmnping schemes:

1)Synchrotron tune spread induced inside an individual bunch due
to a highly anharmonic [quartic) r.f. potential generated at the

center of each bunch by a so-called Landau cavitiy#,

2]Bunch-to-bunch synchrotron tune spread achieved through
modulation of the fundamental r.f. voltage by a secondary voltage
source of lower harmonic number so that consecutive bunches fl1l
up slightly dilferent buckets and obviously, their synchrotron
tunes are no ionger the same,

3)Damping through a radial positicn feedback loop where a
longitudinal broadband kicker delivered zn amplitude-limited
correction voltage to each bunch on a turn-by-turn basts, thereby
actively damping the coupled bunch modes.

The machine-dependent parameters. which are considered
here, are derived from the Fermilab Booster; this study being
motivated by an instability problem in that machine.

Longitudinal Phase-Space Tracking with Wake Fields

Briefly summarized, the tracking procedure used in ESME
consists of turn-by-turn iteration of a pair of Hamilton-like
difference equations describing synchrotron oscillation in 6—¢ phase-
space (0 € 8 < 2r for the whole ring and € = E — E,,, where E, is the
synchronous particle energy). Knowing the particle distribution in
the azimuthal direction, p(8), and the revolution frequency, w,, after
each turn, one can construct a wake field induced voltage as

followsS

V(8] = ew, an Zinwglelnd, (1)

n=-cc

where p,, represents the discrete Fourier spectrum of the beam and
Z{w) 15 a longitudinal coupling impedance. The numerical procedure
involved in evaluating the above expression, Eq. (1}, necessarily
employs a discretization of the 8-direction. Scme caution s required
in this process of binning, due to the finite statistics inherent in
such a simulation.

For the purpose of our simulation, only the relatively high-Q
portion of the longitudinal impedance is relevant. A single parasitic
mode can be modelled by the harmonic resonator of the impedance
given by

R

20 = T G v~ o7o]

(2)

Here R is the shunt impedance, @ denotes the quality factor of the
resonator and o, is its resonant frequency. For M equally spaced
coupled bunches there are M possible dipole modes labeled by m =
L 2,... M. To {llustrate the m-th dipole mode cne can lock at the §-
position of the centroid of each bunch, @;, (=1, 2,..., M. The
signature of the simpiest coupled bunch mode has the form of a
discrete propagating plane wave:

{
8,0t} = Gosm{ 3;‘,1-2-- mst} . )

where @g is the synchrotron frequency. Based on the analytic model

of coupled bunch modes proposed by Sacherer! one can formulate a
simple resonance condition for the m-th dipole mode driven by the
longitudinal impedance Z{wl sharply peaked at w,. This condition is
glven by:

We = (MM + m) @y + @ (4]

where n {s an integer. Since @, is time dependent (acceleration) and
0 is fixed (geometry), and knowing that the width of the impedance
peak {s governed by o,/Q one can clearly see that the resonance
condition, Eq. (4), is maintained over a finite time interval. This
leads to the useful concept of a mode crossing the impedance
resonance. Using the explicit time dependence of w, [kinematics)
and Eq. (4} one can easily calculate crossing intervals for various
modes. This serves as a guide in the simulation since it allows us to

select an appropriate time domain where the mode of interest
crosses the resonance and will more likely becorne unstable.

Undamped Coupled Bunch Mode

In the early stages of this study we tentatively identified the

parasitic resonarnce at f, = 85.5 MHz with Q = 3378 and R = 914x1063
as the offending part of the impedance giving rise to a coupled
bunch instability with harmonic number m = 53. This mode crosses
the resonance earlier In the booster cycle, therefore the appropriate
time interval to study the m = 53 mode is chosen as 19 — 26x1073 sec.
The r.f. system of the Fermilab Booster provides 84 accelerating
buckets. As a starting point for our simulation each bucket in 6—¢
phase-space is populated with 100 macro-particles according to a bi-
Gaussian distribution matched to the bucket so that 95% of the
beam is confined within the contour of the longitudinal emiitance of
0.02 eV-sec. Each macro-particle 1s assigned an effective charge to

simulate a beam intensity of 1.5x10!2 protons.

In a real-life accelerator any coherent instability starts out of
noise and graduaily builds up to large amplitudes. In our model
situation it proved necessary to create some intrinsic small
amplitude - "seed" of a given mode in order to “"start-up” the
instability, The "seeding" procedure is basically prescribed by Eq.
(3). Initially identical bunches are rigidly displaced from the center
of each bucket (both in £ and 8) so that the position of their
centroids, ;. satisfy Eq. (3} for all the bunches around the ring. In
practice, a subroutine of ESME, which generates a closed contour
in 8¢ space under the action of a sinusoidally varying voltage, was
used to establish the position of the bunch centroids. The intrinsic

seed amplitude, 8,, was assigned a value of 10~ rad corresponding
to an amplitude in energy of approximately 2 MeV.

To visualize the position and shape of individual bunches as
they evolve in time one can compose a "mountain range” diagram by
plotting 8-projections of the bunch density in equal Increments of
revolution number and then stacking the projections to imitate the



time flow. The resulting mountain range plot for an undamped
moede 53 is given in Fig. la.

In the next few sections we will proceed with the discussion
of suggested damping mechanisms,

Fig. 1 Collection of mountain range plots illustrating the behavior
of coupled bunch mode m = 53 with:
a} no darnping,
b} passive damping via Landau cavity,
¢) passive damping through the ho = 77 harmonic,
d) active damping via radial position feedback.

Fi Harm ndau Cavi

Now let us consider a situation where, in addition to the
fundamental r.f. voltage source, we have a secondary source of
voltage whose frequency is equal to that of the fourth harmonic of
the fundamental: the so-called Landau cavity. The phase and
armplitude of the secondary voltage source are prescribed by the
conditions that both the first and second derivatives of the net
voltage vanish at the center of each bunch. The above condition can

be formulated by Introduckag both voltages explicitly as follows

V1 (¢) = Vi sin(og + @)
and (7)
V4(¢] = erf Sm(¢4 + 4¢).

Here ¢g is the synchronous phase relative to the fundamental r.f.
waveform, ¢, is the synchronous phase relative to the fourth
harmonic waveform and { denotes the deviation of a particle from

2

the synchronous phase, ¢ = ho — ¢g. Parameter k is the ratlo of the

secondary and primary voltage amplitudes. The combined net
voltage is constrained by the condition that its first and second
dertvatives vanish at the center of each bunch. This fixes matching
parameters k and ¢, as follows

3/ 1+15 cos? ¢

k= 16
and t:]]
cosit — ¢g)
ty = arcos —an

The resulting r.f. voltage is llustrated in Fig. 2, The purpose of
imposing the above constraint, Eq. (8), is to provide a highly
nonlinear bucket resulting in large synchrotron tune spread within
each bunch. This in turn may eventually provide stability against
coherent motion of coupled bunches (via a Landau damping
mechanism). A family of closed orbits in 6-e space corresponding to
different amplitudes, was generated using a contour drawing
subroutine of ESME. The result is depicted in Fig. 3. Each orbit is
labeled with the respective synchrotron tune in frequency units

(sec™i). The bounding curve, with tune 0, represents the separatrix
(note the "squareness” of the bucket in this double r.f. voltage
systern).

The tracking was carrled out for exactly the same inftial
condition as described in the previous section, In addition to the
fundamental rf. voltage the Landau cavity voltage, Vyi¢). is turned

on linearly aver the first 2x1073 sec, matched to the fundamental
voltage program according to Eq. (8] for a period of 3x10~3 sec and

finally turmed off linearly over the last 3x10~3 sec. The tracking
results are illustrated by the mountain range plot collected In Fig.
1b. One can see by comparison with the corresponding plot for the

undamped mode, Fig, la. that the Landau cavity provides
substantial damping of an initially unstable coupled bunch mode.

¢ in units of =

C.0

f
~0.5

Normalized Voltage

—-1.04

Fig. 2 Combined voltage of a double r.f. syster with Landau cavity.

Damping Through Inter-Bunch Tune Spread

One can apply a secondary voltage source with lower than
the fundamental harmonic number. We will consider a situation
where 2 out of 18 r.f. cavities, modelled as a secondary source,
provide voltage at hammonic number hy = 77 (the remaining 16
cavities, modelled as the fundamental r.f. source, will run at h; =
84). Now any seven (h; — hy = 7) consecutive buckets differ due to
the voltage modulation provided by the secondary source. Therefore,
the value of synchrotron frequency will vary frem bunch to bunch
{even for small amplitude oscillations in the linear reglon). For
exactly the same initial conditions as in the sirnulation of the
previous section the hy = 77 voltage source replaces the Landau
cavity with the same linear turn on/off {eature. As before, the
phase-space evolution of a single bunch, given by the mountain
range plat, Fig. 1c, illustrates effective damping of m = 53 coupled
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Fig. 3 Synchrotron tune spread inside a bucket corrected by
Landau cavity as a function of relative amplitude.(e - EJ)/E,,
where Eg is the height of the bucket.

bunch modes. In fact, in this case the damping is somewhat more
evident. .
Active Dam ugh ial Posifion F
It was noted that the coupled bunch oscillations in the
Fermilab Booster gave rise to a radla! position signal in a circuit
originally designed to damp horizontal betatron osclllations. It was
suggested that this circuit be used to drive a longitudinal
broadband kicker, thereby actively damping the coupled bunch
modes. This scheme was also simulated. The "kicker” in our
simulation delivered a maximum 1kV correction voltage to each
bunch; the "seed" amplitude for the mode corresponded to a signal
level safely above the noise level of the monitor in the damping
circuit, as inferred from observations of the signal and knowledge of
the dispersion in the region of the monitor.Here again the
simulation results for m = 53 coupled bunch mode is 1llustrated by
the mountain range profile given in Fig, 1d. Comparison with the
other schemes indicates that such an active damper is very effective
in both cases studied here.

Inter- and Intra- Bunch Tung Spread

At this point. some qualitative comments concerning the
passive damping mechanisms and their relative efficacy are in
order. We note that for mode 53, the cavities operating at harmonic
77 appear to be much more efficlent than the Landau cavity (See
Figs. 1b and 1c). This is not totally surprising, since the growth of
the instability is dependent upon bunch-to-bunch “communication”
via wake flelds. The hy = 77 cavities disrupt this communication
directly, via bunch-to-bunch tune spread . In addition, the distance
between the bunches is modulated by the secondary r.f. voltage and
therefore the components of the current at harmonics of the
fundamental r.f, frequency are reduced. The Landau cavity, on the
other hand, operates at an harmeonic of the fundamental r.f.
frequency, and therefore induces tune spread only within each
bunch. The Landau cavity attempts to "discourage" the growth of
the instability via suppression of the coherent motion inside each
single bunch, The tune spread induced within a bunch, however, is
a function of the range of amplitudes of the particles undergoing
synchrotron motion. Thus, if a group of particles oscillate at
amplitude “"close™ enough to each other, we might expect them to
respond to a suitable driving force in a coherent fashion.
Presumably, particles may be regarded as "close” if the tune spread
among them is smaller than the frequency characterizing the
growth of the instability. This "clustering” phenomenon did, in fact,
occur in the simulation for mode 53, as illustrated by the mountain
range plot in Fig. 1b. It is evident that a cluster of "almost coherent”
particles (in the previously described sense) still participates in
coupled bunch oscillation, while the remaining particles with
synchrotron tune spread larger than some critical value do not
respond coherently to the coupling wake field. This would suggest
that there exists a threshold tune spread defining the extent of a
"ccherent blob” inside the bucket: that extent being a characteristic
caherence length for a given driving frequency.
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